Sg随着科学技术的发展,机械制造技术有了深刻的变化。由于社会对产品多样化的需求更加强烈,多品种、中小批量生产的比重明显增加,采用传统的普通加工设备已难以适应高效率、高质量、多样化的加工要求。机床数控技术的应用,大大缩短了机械加工的前期准备时间,并使机械加工的全过程自动化水平不断提高,同时也增强了制造系统适应各种生产条件变化的能力。数控线切割机床的基本组成包括加工程序、高频电源、驱动系统﹑数控系统及机床本体。加工程序可由人工编写(如早期的3B指令),现在都在计算机上进行绘图(如现在的CAXA,HL,HF,YH等编程软件),然后生成加工程序。程序的输入可由数控系统的面板(单板机)进行手工输入,也可通过计算机的232串行口进行传输,也可以用计算机USB接口进行传输。在选购数控线切割机床时可从三个方面考虑,首先是机床本体能否符合自己的加工要求,机床的质量如何。其次是数控系统,数控系统有很多种类,选择合适的系统是选购数控机床的关键。最后是驱动单元,也是机床控制的关键,不同的驱动单元能达到的加工精度也不一样,在选择驱动单元时,要根据加工的工件的精度要求选择合适的驱动单元。以下从机床本体﹑数控系统及驱动单元三个方面进行分析:1、机床本体的选择首先机床结构设计与加工件尺寸和重量要达到最佳的匹配。对于中大型负载工作台采用全支撑加工中心结构。这样设计才能具有足够的承载﹑刚度、精度、抗振性和精度保持性。其次是进给系统的机械传动要采用滚珠丝杠,滚珠丝杠优于三角螺纹丝杠和梯形螺纹丝杠,并且要求丝杠的直径尽可能大些,增加刚性。再次是导轨,工作台运动导轨是保证工作台运动精度的关键,用户在选型时应高度重视。首先观察导轨的横截面的大小,在同等条件下,越粗壮,刚性越好,加工中越不易产生变形,才能保证机床在长期工作中能得到最高精度和耐用性。日前市场上常见的导轨结构有以下几种:①镶钢滚珠式滚动导轨;
②镶钢滚柱式滚动导轨;
③直线滚动导轨。
第一种与第二种的区别在导轨的滚体上,一个是滚珠一个是滚柱。滚珠与导轨面是点接触,滚柱与导轨面是线接触,所以它的耐磨性和轴承能力都大大优于滚珠式。而线性滑轨是一种滚动导引,它由钢珠在滑块与滑轨之间作无限滚动循环,使得负载平台能沿着滑轨轻易的以高精度作线性运动,其摩擦系数可降至传统滑动导引的1/50,使之能轻易地达到μm级的定位精度。滑块与滑轨间的末制单元设计,使得线形滑轨可同时承受上下左右等各方向的负荷,线性滑轨有更平顺且低噪音的运动特性。使之精度保持和承载能力都大大优于滚珠和滚柱式。目前在日本沙迪克公司、日本三菱公司、瑞士夏米尔公司、瑞阿奇公司进口的机床中都是采用第三种结构,所以通过对比,用户在选型时应尽量考虑第三种结构。2. 数控系统的选配数控系统是数控机床的“大脑",对机床控制信息进行运算及处理。根据数控系统的原理可分为经济型数控系统和标准型数控系统两大类。2.1 经济型数控系统经济型数控系统从控制方法来看,一般指开环数控系统。开环数控系统是指数控系统本身不带位置检测装置,由数控系统送出一定数量和频率的指令脉冲,由驱动单元进行机床定位。开环系统在外部因素影响的情况下,机床不动作或动作不到位,但系统已当机床到达了指定位置,此时机床的加工精度将大大降低。但因其结构简单、反应迅速、工作稳定可靠、调试及维修均很方便,加之价格十分低廉,但受步进电机矩频特性及精度、进给速度、力矩三者之间相互制约,性能的提高受到限制。所以,经济型数控系统目前用于数控快走丝线切割及一些速度和精度要求不高的经济型中走丝线切割机床,在普通快走丝机床的数控化改造中也得到广泛的应用。2.2 精密型数控系统精密型数控系统包括半闭环数控系统和全闭环数控系统。半闭环数控系统一般指机床的伺服电机的位置信号(光电编码器)反馈到数控系统,系统能自动进行位置检测和误差比较,可对部分误差进行补偿控制,因此其控制精度比开环数控系统要高,但比全闭环的数控系统要低。全闭环数控系统除包括机床的伺服电机的位置反馈外,还有机床工作台的位置检测装置(通常用光栅尺)的位置信号反馈到系统,从而形成全部位置随动控制,系统在加工过程中自动检测并补偿所有的位置误差。全闭环数控系统的加工精度是最高的,但这种系统的调试、维修极其困难,而且系统的价格很高,只适用于中、高档的数控机床上。因为开环控制系统的价格比闭环控制系统要低得多,因此在选择数控系统时,要考虑数控系统占整台数控机床的价格成本比例,然后根据机床的配置情况及机床本身的要求,中、低档机床采用开环控制系统,中、高档机床采用闭环控制系统。3、驱动单元的选配驱动单元包括驱动装置和电机两部分,对驱动单元的选购主要在于驱动装置的选择,因为电机是通用的部件,性能差别只存在于不同的厂家和型号。驱动电机主要可分为:反应式步进驱动电机、混合式(也称永磁反应式)步进驱动电机和伺服驱动电机三大类。反应式步进驱动电机的转子无绕组,由被励磁的定子绕组产生反应力矩实现步进运行。混合式步进电机的转子用永久磁钢,由励磁和永磁产生的电磁力矩实现步进运行。步进电机受脉冲的控制,通过改变通电的顺序可改变电机的旋转方向,改变脉冲的频率可改变电机的旋转速度。步进电机有一定的步距精度,没有累积误差。但步进电机的效率低,拖动负载的能力不大,脉冲当量不能太大,调速范围不大。目前步进电机可分为两相、三相、五相等几种,常用的是五相步进电机。在过去很长一段时间里,步进电机占很大的市场,但目前正逐步为伺服电机所取代。目前常用的伺服电机是交流伺服电机,在电机的轴端装有光电编码器,通过检测转子角度用以变频控制。从最低转速到最高转速,伺服电机都能平滑运转,转矩波动小。伺服电机有较长的过载能力,有较小的转动惯量和大的堵转转矩。伺服电机有很小的启动频率,能很快从最低转速加速到额定转速。采用交流伺服电机作为驱动器件,可以和直流伺服电机一样构成高精度,高性能的半闭环或闭环控制系统。由于交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前已经在很大范围内取代了直流伺服电机。采用高速微处理器和专用数字信号处理机(DSP)的全数字化交流伺服系统出现后,原来的硬件伺服控制变为软件伺服控制,一些现代控制理论中的先进算法得到实现,进而大大地提高了伺服系统的性能,因此伺服单元能较大的提高加工效率及加工精度,但伺服驱动单元的价格也较高。随着伺服控制技术的逐步提高,目前伺服驱动单元正逐步成为驱动单元的主力军,伺服驱动单元的价格也在逐步减低伺服驱动器有两种。一种采用脉冲控制方式,此种驱动器与电机闭环,但不反馈到数控系统,这种驱动器在某种程度上可称为开环控制的伺服控制。另一种采用电压控制方式,通过电压的高低进行电机的转速控制,电机的反馈信号通过驱动器反馈到数控系统进行位置控制。选择驱动单元时,也要考虑驱动单元的价格在整台数控机床中的比例。整台数控机床价格较低的一般选择步进驱动单元,而价格较高的机床选择伺服驱动单元。但选择驱动单元的同时,也要考虑驱动单元与数控系统的匹配问题,选择闭环控制系统时必须选择闭环的伺服驱动单元。交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。4、功能选择以上是根据数控系统的加工精度进行考虑,除此以外,还要从数控系统的功能选择上考虑。4.1 控制轴数控系统控制轴的数量也是选择的关键。按控制轴的数量可分为两轴联动、四轴联动、多轴联动等。控制轴的数量越多,机床所能加工的形状越复杂,但其成本就越高。目前线切割割机床一般用两个直线移动轴联动,有锥度装置的附加二个直线移动轴。高档的系统则联动的轴更多,代表线切割机床制造业最高境界的是五轴联动数控系统,其中四个轴分别为XYUV直线移动轴,一个轴为Z轴作上下直线移动轴,五轴联动时可加工出比较复杂的空间零件。当然这需要高档的数控系统、伺服系统以及软件的支持,对机床的要求也极高。控制轴越多,数控系统的价格成几何级数增长。因此,在选择数控系统时,要根据机床本身的运动轴进行选择,多余的控制轴并不能提高机床的控制精度,反而增加了数控系统的成本。4.2 图形显示系统的图形显示功能,该功能用于模拟零件加工过程,显示真实刀具在工件上的切割路径,可以选择直角坐标系中的一个平面,也可选择不同视角的三维立体,可以在加工的同时作实时的显示,也可在机械锁定的方式下作加工过程的快速描绘,是一种检验零件加工程序,提高编程效率和实时监视的有效工具。上述这类问题在数控线切割机床的功能配置时是经常遇到的,作为一个数控机床的设计和销售人员以及投资购买者,都必须清楚了解数控系统的各种功能用途,根据机床的实际情况为用户配置经济合理、功能和价格比都比较高的数控机床,减少不必要的浪费。
一、绘制工件图形
1. 画圆
(1)选择“基本曲线——圆”菜单项,用“圆心-半径”方式作圆;
(2)输入(0,0)以确定圆心位置,再输入半径值“8”,画出一个圆;
(3)不要结束命令,在系统仍然提示“输入圆弧上一点或半径”时输入“26”,画出较大的圆,单击鼠标右键结束命令;
(4)继续用如上的命令作圆,输入圆心点(-40,-30),分别输入半径值8和16,画出另一组同心圆。
2.画直线
(1)选择“基本曲线——直线”菜单项,选用“两点线”方式,系统提示输入“第一点(切点,垂足点)”位置;
(2)单击空格键,激活特征点捕捉菜单,从中选择“切点”;
(3)在R16的圆的适当位置上点击,此时移动鼠标可看到光标拖画出一条假想线,此时系统提示输入“第二点(切点,垂足点)”;
(4)再次单击空格键激活特征点捕捉菜单,从中选择“切点”;
(5)再在R26的圆的适当位置确定切点,即可方便地得到这两个圆的外公切线;
(6)选择“基本曲线——直线”,单击“两点线”标志,换用“角度线”方式;
(7)单击第二个参数后的下拉标志,在弹出的菜单中选择“X轴夹角”;
(8)单击“角度=45”的标志,输入新的角度值“30”;
(9)用前面用过的方法选择“切点”,在R16的圆的右下方适当的位置点击;
(10)拖画假想线至适当位置后,单击鼠标左键,画线完成。
3.作对称图形
(1)选择“基本曲线——直线”菜单项,选用“两点线”,切换为“正交”方式;
(2)输入(0,0),拖动鼠标画一条铅垂的直线;
(3)在下拉菜单中选择“曲线编辑——镜像”菜单项,用缺省的“选择轴线”、“拷贝”方式,此时系统提示拾取元素,分别点取刚生成的两条直线与图形左下方的半径为8和16的同心圆后,单击鼠标右键确认;
(4)此时系统又提示拾取轴线,拾取刚画的铅垂直线,确定后便可得到对称的图形。
4.作长圆孔形
(1)选择“曲线编辑——平移”菜单项,选用“给定偏移”、“拷贝”和“正交”方式;
(2)系统提示拾取元素,点取R8的圆,单击鼠标右键确认;
(3)系统提示“X和Y方向偏移量或位置点”,输入(0,-10),表示X轴向位移为0,Y轴向位移为-10;
(4)用上述的作公切线的方法生成图中的两条竖直线。
5.最后编辑
(1)选择橡皮头图标,系统提示“拾取几何元素”;
(2)点取铅垂线,并删除此线;
(3)选择“曲线编辑——过渡”菜单项,选用“圆角”和“裁剪”方式,输入“半径”值20;
(4) 依提示分别点取两条与X轴夹角为30°的斜线,得到要求的圆弧过渡;
(5)选择“曲线编辑——裁剪” 菜单项,选用“快速裁剪”方式,系统提示“拾取要裁剪的曲线”,注意应选取被剪掉的段;
(6)分别用鼠标左键点取不存在的线段,便可将其删除掉,完成图形。
二、轨迹生成及加工仿真
1. 轨迹生成
轨迹生成是在已经构造好轮廓的基础上,结合线切割加工工艺,给出确定的加工方法和加工条件,由计算机自动计算出加工轨迹的过程。下面结合本例介绍线切割加工走丝轨迹生成方法。
(1)选择“轨迹生成”项,在弹出的对话框中,按缺省值确定各项加工参数。
(2)在本例中,加工轨迹与图形轮廓有偏移量。加工凹模孔时,电极丝加工轨迹向原图形轨迹之内偏移进行“间隙补偿”。加工凸模时,电极丝加工轨迹向原图形轨迹之外偏移进行“间隙补偿”。补偿距离为ΔR=d/2+Z= 0.06mm,如图2所示。把该值输入到“第一次加工量”,然后按确定。
图2 实际加工轨迹
(3)系统提示“拾取轮廓”。本例为凹凸模,不仅要切割外表面,而且要切割内表面,这里先切割凹模型孔。本例中有三个凹模型孔,以左边圆形孔为例,拾取该轮廓,此时R8mm轮廓线变成红色的虚线,同时在鼠标点击的位置上沿着轮廓线出现一对双向的绿色箭头,系统提示“选择链拾取方向”(系统缺省时为链拾取)。
(4)选取顺时针方向后,在垂直轮廓线的方向上又会出现一对绿色箭头,系统提示“选择切割的侧扁”。
(5)因拾取轮廓为凹模型孔,拾取指向轮廓内侧的箭头,系统提示“输入穿丝点位置”。
(6)按空格键激活特征点捕捉菜单,从中选择“圆心”,然后在R8mm的圆上选取,即确定了圆心为穿丝点位置,系统提示“输入退出点(回车则与穿丝点重合)”。
(7)单击鼠标右键或按回车,系统计算出凹模型孔轮廓的加工轨迹。
(8)此时,系统提示继续“拾取轮廓”,按上述方法完成另外两个凹模的加工轨迹。
(9)系统提示继续“拾取轮廓”。
(10)拾取AB段,此时AB段变成红色虚线。
(11)系统又顺序提示“选择链拾取方向”、“选择切割的侧边”、“输入穿丝点位置”和“输入退出点”,选择A—B—C—D—E—F—G—H—A的顺序加工,B点为顺序起点,此轮廓为外表面,选择加工外侧边,穿丝点调整到模胚之外,取点为P(-29.500,-48.178),退出点也选此点。
(12)单鼠标右键或按ESC键结束轨迹生成,选择编辑轨迹命令的“轨迹跳步”功能将以上几段轨迹连接起来。
2.加工仿真
拾取“加工仿真”,选择“连续”与合适的步长值,系统将完整地模拟从起步到加工结束之间的全过程。
三、生成线切割加工程序
选择“生成3B代码”项,然后选取生成的加工轨迹,即可生成该轨迹的加工代码。下面是得到的3B代码(D为暂停码,DD为停机码)。
四、代码传输
(1)选择“应答传输”项,系统弹出一对话框要求指定被传输的文件(在刚生成过代码的情况下,屏幕左下角会出现一个选择当前代码或代码文件的立即菜单)。
(2)选择目标文件后,按“确定”,系统提示“按键盘任意键开始传输(ESC退出)”,按任意键即可开始传输加工代码文件。
五、需要注意的几个问题
(1)CAXA线切割的工件几何的输入方式,除了交互式绘图外还可以直接读入其他CAD软件生成的图形数据及图像扫描数据。
(2)线切割加工的零件基本上是平面轮廓图形,一般不会切割自由曲面类零件。
(3)穿丝点位置应尽量靠近程序的起点,以缩短切割时间。程序的起点一般也是切割的终点,电极丝返回时必然存在重复位置误差,造成加工痕迹,使精度和外观质量下降,因此程序起点应选择在粗糙度较底的面上。当工件各面粗糙度要求相同时,则应选择在截面相交点。对于各切割面既无技术要求的差异又没有异面的交点的工件,则应选择在便于钳工修复的位置上。
(4)当拾取多个加工轨迹同时生成加工代码时,系统按各轨迹之间拾取的先后顺序自动实现跳步,与“轨迹生成——轨迹跳步”功能相比,用这种方式实现跳步,各轨迹仍然能保持相对独立。
caxa线切割是一个面向线切割机床数控编程的软件系统,在我国线切割加工领域有广泛的应用。它可以为各种线切割机床提供快速、高效率、高品质的数控编程 代码,极大地简化数控编程人员的工作。caxa线切割可以快速、准确地完成在传统编程方式下很难完成的工作,可为您提供线切割机床的自动编程工具,可使操 作者以交互方式绘制需切割的图形,生成带有复杂形状轮廓的两轴线切割加工轨迹。caxa线切割支持快走丝线切割机床,可输出3b、4b及iso格式的线切 割加工程序。其自动化编程的过程一般是:利用caxa线切割的cad功能绘制加工图形→生成加工轨迹及加工仿真→生成线切割加工程序→将线切割加工程序传 输给线切割加工机床。 下面以一个凸凹模零件的加工为例说明其操作过程。凸凹模尺寸如图1所示,线切割加工的电极丝为φ0.1mm的钼丝,单面放电间隙为0.01mm。 图1 要加工的凸凹模尺寸 一、绘制工件图形 1. 画圆 (1)选择“基本曲线——圆”菜单项,用“圆心-半径”方式作圆; (2)输入(0,0)以确定圆心位置,再输入半径值“8”,画出一个圆; (3)不要结束命令,在系统仍然提示“输入圆弧上一点或半径”时输入“26”,画出较大的圆,单击鼠标右键结束命令; (4)继续用如上的命令作圆,输入圆心点(-40,-30),分别输入半径值8和16,画出另一组同心圆。 2.画直线 (1)选择“基本曲线——直线”菜单项,选用“两点线”方式,系统提示输入“第一点(切点,垂足点)”位置; (2)单击空格键,激活特征点捕捉菜单,从中选择“切点”; (3)在r16的圆的适当位置上点击,此时移动鼠标可看到光标拖画出一条假想线,此时系统提示输入“第二点(切点,垂足点)”; (4)再次单击空格键激活特征点捕捉菜单,从中选择“切点”; (5)再在r26的圆的适当位置确定切点,即可方便地得到这两个圆的外公切线; (6)选择“基本曲线——直线”,单击“两点线”标志,换用“角度线”方式; (7)单击第二个参数后的下拉标志,在弹出的菜单中选择“x轴夹角”; (8)单击“角度=45”的标志,输入新的角度值“30”; (9)用前面用过的方法选择“切点”,在r16的圆的右下方适当的位置点击; (10)拖画假想线至适当位置后,单击鼠标左键,画线完成。 3.作对称图形 (1)选择“基本曲线——直线”菜单项,选用“两点线”,切换为“正交”方式; (2)输入(0,0),拖动鼠标画一条铅垂的直线; (3)在下拉菜单中选择“曲线编辑——镜像”菜单项,用缺省的“选择轴线”、“拷贝”方式,此时系统提示拾取元素,分别点取刚生成的两条直线与图形左下方的半径为8和16的同心圆后,单击鼠标右键确认; (4)此时系统又提示拾取轴线,拾取刚画的铅垂直线,确定后便可得到对称的图形。 4.作长圆孔形 (1)选择“曲线编辑——平移”菜单项,选用“给定偏移”、“拷贝”和“正交”方式; (2)系统提示拾取元素,点取r8的圆,单击鼠标右键确认; (3)系统提示“x和y方向偏移量或位置点”,输入(0,-10),表示x轴向位移为0,y轴向位移为-10; (4)用上述的作公切线的方法生成图中的两条竖直线。 5.最后编辑 (1)选择橡皮头图标,系统提示“拾取几何元素”; (2)点取铅垂线,并删除此线; (3)选择“曲线编辑——过渡”菜单项,选用“圆角”和“裁剪”方式,输入“半径”值20; (4) 依提示分别点取两条与x轴夹角为30°的斜线,得到要求的圆弧过渡; (5)选择“曲线编辑——裁剪” 菜单项,选用“快速裁剪”方式,系统提示“拾取要裁剪的曲线”,注意应选取被剪掉的段; (6)分别用鼠标左键点取不存在的线段,便可将其删除掉,完成图形。 二、轨迹生成及加工仿真 1. 轨迹生成 轨迹生成是在已经构造好轮廓的基础上,结合线切割加工工艺,给出确定的加工方法和加工条件,由计算机自动计算出加工轨迹的过程。下面结合本例介绍线切割加工走丝轨迹生成方法。 (1)选择“轨迹生成”项,在弹出的对话框中,按缺省值确定各项加工参数。 (2) 在本例中,加工轨迹与图形轮廓有偏移量。加工凹模孔时,电极丝加工轨迹向原图形轨迹之内偏移进行“间隙补偿”。加工凸模时,电极丝加工轨迹向原图形轨迹之 外偏移进行“间隙补偿”。补偿距离为δr=d/2+z= 0.06mm,如图2所示。把该值输入到“第一次加工量”,然后按确定。 图2 实际加工轨迹 (3) 系统提示“拾取轮廓”。本例为凹凸模,不仅要切割外表面,而且要切割内表面,这里先切割凹模型孔。本例中有三个凹模型孔,以左边圆形孔为例,拾取该轮廓, 此时r8mm轮廓线变成红色的虚线,同时在鼠标点击的位置上沿着轮廓线出现一对双向的绿色箭头,系统提示“选择链拾取方向”(系统缺省时为链拾取)。 (4)选取顺时针方向后,在垂直轮廓线的方向上又会出现一对绿色箭头,系统提示“选择切割的侧扁”。 (5)因拾取轮廓为凹模型孔,拾取指向轮廓内侧的箭头,系统提示“输入穿丝点位置”。 (6)按空格键激活特征点捕捉菜单,从中选择“圆心”,然后在r8mm的圆上选取,即确定了圆心为穿丝点位置,系统提示“输入退出点(回车则与穿丝点重合)”。 (7)单击鼠标右键或按回车,系统计算出凹模型孔轮廓的加工轨迹。 (8)此时,系统提示继续“拾取轮廓”,按上述方法完成另外两个凹模的加工轨迹。 (9)系统提示继续“拾取轮廓”。 (10)拾取ab段,此时ab段变成红色虚线。 (11) 系统又顺序提示“选择链拾取方向”、“选择切割的侧边”、“输入穿丝点位置”和“输入退出点”,选择a—b—c—d—e—f—g—h—a的顺序加工,b点 为顺序起点,此轮廓为外表面,选择加工外侧边,穿丝点调整到模胚之外,取点为p(-29.500,-48.178),退出点也选此点。 (12)单鼠标右键或按esc键结束轨迹生成,选择编辑轨迹命令的“轨迹跳步”功能将以上几段轨迹连接起来。 2.加工仿真 拾取“加工仿真”,选择“连续”与合适的步长值,系统将完整地模拟从起步到加工结束之间的全过程。 三、生成线切割加工程序 选择“生成3b代码”项,然后选取生成的加工轨迹,即可生成该轨迹的加工代码。下面是得到的3b代码(d为暂停码,dd为停机码)。 四、代码传输 (1)选择“应答传输”项,系统弹出一对话框要求指定被传输的文件(在刚生成过代码的情况下,屏幕左下角会出现一个选择当前代码或代码文件的立即菜单)。 (2)选择目标文件后,按“确定”,系统提示“按键盘任意键开始传输(esc退出)”,按任意键即可开始传输加工代码文件。 五、需要注意的几个问题 (1)caxa线切割的工件几何的输入方式,除了交互式绘图外还可以直接读入其他cad软件生成的图形数据及图像扫描数据。 (2)线切割加工的零件基本上是平面轮廓图形,一般不会切割自由曲面类零件。 (3) 穿丝点位置应尽量靠近程序的起点,以缩短切割时间。程序的起点一般也是切割的终点,电极丝返回时必然存在重复位置误差,造成加工痕迹,使精度和外观质量下 降,因此程序起点应选择在粗糙度较底的面上。当工件各面粗糙度要求相同时,则应选择在截面相交点。对于各切割面既无技术要求的差异又没有异面的交点的工 件,则应选择在便于钳工修复的位置上。 (4)当拾取多个加工轨迹同时生成加工代码时,系统按各轨迹之间拾取的先后顺序自动实现跳步,与“轨迹生成——轨迹跳步”功能相比,用这种方式实现跳步,各轨迹仍然能保持相对独立。
1、首先在霸器中走丝将斜线的切割起点作为原点,建立直角坐标系。X,Y的值取斜线线终点相对于现烈书原点的坐标值(取**值)皇现日妈异文消状护即开。
2、其次G值,根据斜线的终点坐标值,谁大取谁,即当X>Y时取GX,反之取GY,当坐标值X=Y时,45°、225°时取GY,135°、315°时取GX;或可任意取向。
3、最后J值,G值确定以后J就是斜线在G方向轴上的投影长度,Z,斜线的加工指令有4种;根据斜线在直角坐标四个不同象限而分别为L1(第一象铁卷吧限)、L2(第二象限)、L3(第三象限)、L4(第四象限)复官逐染题毫末解制屋求。